

The GET Service project (http://www. getservice -project.eu) has received funding from the European

Commission under the 7th Framework Programme (FP7) for Research and Technological Development
under grant agreement n°201 2-318275 .

30 September 2014

Public Document

ICT-20 11.8
GET Service Project

2012 -318275

Deliverable D6.3
Prototypical Implementation of the

Information Aggregation E ngine

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 1

Project acronym : GET Service
Project full title: Service Platform for Green European

Transportation

Work package: 6
Document number: D6.3

Document title: Prototypical Implementation of the
information aggregation engine

Version: 1.0

Delivery date: 30 September 201 4 (month 24)
Actual publication date: TBA

Dissemination level: Public
Nature: Prot ot ype

Editor(s) / lead beneficiary: A. Baumgrass (HPI)

Authors(s): A. Baumgrass (HPI) , M. Hewelt (HPI) , A.
Meyer (HPI) , A. Raptopoulos (EXUS) , J.
Selke (HPI) , T. Wong (HPI)

Reviewer(s): M. Schygulla (PTV) ,
H. Völzer (IBM Research)

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 2

History

Version Changes Authors

0.1 ToC Released A. Raptopoulos

0.2 set format, adapted ToC, outline for introduction, Event-
based communication, Esper usage

A. Baumgrass

0.3 Section 4.3 M. Hewelt

0.4 Performance tests A. Baumgrass

0.5 General platform description T. Wong, A. Baumgrass

0.6 Adapter description J. Selke, A. Baumgrass

0.7 Usage description M. Hewelt, A. Baumgrass

0.8 Proof reading A. Meyer

0.9 Ready for Internal Review A. Baumgrass

0.91 Processed review A. Baumgrass, A. Meyer

0.92 Included summary, conclusion A. Baumgrass

0.93 Included summary, conclusion, introduction to WP6 and
Deliverable

A. Baumgrass

0.94 Proof reading A. Baumgrass, A. Meyer

1.0 Submission A. Baumgrass

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 3

Executive summary

To plan efficiently and respond quickly in the GET Service platform to unexpected events, a
component for the processing of expected and unexpected events is essential. This deliverable
describes the prototype of this component called information aggregation engine (short: aggregation
engine).

The aggregation engine processes events in the context of transportation processes in the GET
Service project, which is crucial for bridging the planning and enactment of these to the analysis and
monitoring of the real-world happenings. For this purpose, D6.1 has established the foundational
concepts in the domain of transportation-related events, while D6.2 focuses on the design and
requirements of the component that is meant to manage them. To this end, in D6.3 a prototype was
developed that implements the designed component reported in this document.

After an introduction of the fundamental concepts of event-based communication, the essential
interaction model of the aggregation engine, the interaction with the engine itself, is reported. The
interaction with the aggregation engine can mainly be conducted in two ways: 1) through a user
interface or 2) through a web service combined with a message-oriented middleware that pushes
event information to the participants.

Thereupon, the deliverable examines the subscription mechanism provided by the aggregation
engine to distribute event notifications between the components in the GET Service platform. In this
deliverable, an event subscription is defined as a specification of the kinds of events an external
component (consumer) is interested in. In particular, event subscriptions are based on a certain
language, here Esper EPL was chosen according to the evaluation in D6.2. In this deliverable, the
usage of event subscriptions are given in general, specific in the context of processes, and for an
explicit transportation-related example, and are the basis for the upcoming deliverables in WP6.

Finally, an examination of the functional and non-functional aspects of the aggregation engine in the
context of the GET Service project is provided. Among others, these aspects include: the system
architecture; the implementation details and technologies used; the integration in the GET Service
platform; the security concerning authentication, authorization, and confidentiality; the performance
of the engine; and the extension possibilities of the engine.

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 4

Contents

Executive summary .. 3

1 Introduction .. 7

1.1 Project Goal .. 7

1.2 Work Package Goal .. 7

1.3 Deliverable Goal ... 8

1.4 Deliverable Structure .. 8

2 Event-Based Communication... 9

2.1 Implementation of Event-based Communication ... 10

2.2 Event-based Communication in GET Service with the Aggregation Engine 12

3 Using the Information Aggregation Engine ... 14

3.1 Usage of the Aggregation Engine through the User Interface ... 15

3.2 Code-based Implementation ... 23

3.3 Summary .. 24

4 Event Subscriptions using Esper Queries .. 25

4.1 Esper Query Definition from Various Sources ... 27

4.2 Queries based on Process Execution and Process Model (using Run-time Information) .. 28

4.3 Examples for Transportation-related Events ... 29

4.3.1 Event Sources ... 29

4.3.2 Aggregation Rules ... 29

4.3.3 Selection of High-level Events ... 31

4.3.4 Discussion ... 32

5 Functional Aspects of the Aggregation Engine ... 34

5.1 System Architecture .. 34

5.2 Implementation Details and Technologies Used ... 35

6 Non-functional Aspects of the Aggregation Engine .. 38

6.1 Aggregation Engine in the GET Service Platform ... 38

6.2 Security .. 38

6.3 Performance ... 39

6.4 Extensibility .. 40

6.4.1 Adapter Concept .. 41

6.4.2 Advanced Event Services .. 42

6.4.3 Dependency to Esperôs Event Processing Capabilities and EPL 42

7 Conclusion ... 43

8 References .. 44

Appendix... 45

I. Example of an Event type definition as XML Schema... 45

II. Example of an Event specification as XML ... 45

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 5

List of Figures

Figure 1: Event channel's logical functions ... 10

Figure 2: Event-based communication: Pull scheme ... 11

Figure 3: Event-based communication: Push scheme... 11

Figure 4: Event-based communication through the information aggregation engine 12

Figure 5: Sequence of actions to publish and subscribe to events of the aggregation engine 15

Figure 6: User interface of the WP6 aggregation engine ... 16

Figure 7: Upload example ... 16

Figure 8: Query interface .. 17

Figure 9: Adding a subscription .. 18

Figure 10: Subscription interface .. 18

Figure 11: Overview of available queues in ActiveMQ .. 19

Figure 12: Event notification details in ActiveMQ .. 20

Figure 13: Event view ... 20

Figure 14: View on the event stored in the aggregation engine ... 21

Figure 15: Event type overview ... 21

Figure 16: Creation of a new event type ... 22

Figure 17: User interface to define aggregation rules in the aggregation engine 22

Figure 18: Event pattern example ... 27

Figure 19: High-level events for transportation execution .. 32

Figure 20: Packages of the aggregation engine .. 35

Figure 21: GET Service components .. 38

Figure 22: Performance of aggregation engineôs web service in milliseconds 39

Figure 23: Performance of the aggregation engine for JMS event uploads 40

Figure 24: Adapter configuration form ... 41

List of Tables

Table 1 Pattern expression operators ... 26

Table 2 Position update event type ... 30

Table 3 Summary of required capabilities of the aggregation service .. 34

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 6

List of Terms and Abb reviations

Term Meaning

3PL Third Party Logistics Provider: A company that provides multiple logistics services for the

use by clients with direct access to its owned assets, like drivers, driving units, pulled units

and freight units.

CEP Complex Event Processing

DoW Description of Work

EPL Event processing language

Event

Consumer

Entity which receives an event

Event Source Entity which publishes an event

Event

channel

Entity which receives events from an event source, makes routing decisions, and sends the

unchanged events to one or more event consumers

Event

matching

Event matching is the procedure of detecting the subscriptions that match a particular

event.

Event

notification

Object to transmit event information in a serialized form.

Event

subscription

Consumers describe the kinds of notifications they are interested in in form of event

subscriptions.

GPS Global Positioning System

JMS Java Message Service

LSP Logistics Service Provider

MOM Message-oriented Middleware

SOAP Simple Object Access Protocol

WP Work package

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 7

1 Introduction

1.1 Project Goal

The GET Service platform provides transportation planners with the means to plan transportation
routes more efficiently and to respond quickly to unexpected events during transportation. To this
end, it connects to existing transportation management systems and improves on their performance
by enabling sharing of selected information between transportation partners, logistics service
providers and authorities. In particular, the GET Service platform consists of components that: (i)
enable aggregation of information from the raw data that is shared between partners and
transportation information providers; (ii) facilitate planning and re-planning of transportation based
on that real-time information; and (iii) facilitate real-time monitoring and control of transportation, as
it is being carried out by own resources and partner resources. By providing this functionality, the
GET Service platform aims to reduce the number of empty miles that are driven, improve the modal
split, and reduce transportation times and slack, as well as response times to unexpected events
during transportation. Thus, it reduces CO2 emissions and improves efficiency.

1.2 Work Package Goal

WP6 aims at providing the foundation for the planning and service composition work packages by
providing accurate state information of service composition instances, with the help of event
processing (GET Service, 2012). Therefore, its main objectives include the identification, capture,
and dissemination of events that can occur during the transportation of goods. This involves
operations in charge of processing the raw events captured from devices (e.g. locations as
longitude and latitude), from the environment (e.g., weather conditions), or emitted by other systems
(e.g. sensors attached to trucks), for example aggregating events to provide them with a specific
meaning, and correlating events to specific activities that are carried out in the transportation.

In the GET Service project, WP6 has connections to several work packages, which deliver, specify,
or consume transportation-related information and events (cf. (GET Service, 2012)). WP1 is the
requirements analysis work package that delivers information about the scenarios and use cases
that are relevant for the project. WP2 to WP7 are the development work packages. WP2 defines the
structure of the GET Service architecture, including a standardisation of the interfaces (data flows)
between the different components. This architecture serves as basis to integrate the implementation
of the aggregation service developed in WP6. In WP3, PC-based and mobile device-based user
interfaces for end-user services will be developed for both transportation management and route
planning that support run-time aggregated transportation planning and control. The interaction with
the user that is enabled through these services can also be captured as events and needs to be
processed in the aggregation service. WP4 is aimed at defining a domain-specific modelling
language that allows the representation of transportation processes and the coordination of all the
parties involved in the platform at run-time. As a consequence, events must be associated to the
activities defined in the process models so that they can be automatically monitored together with
the other elements. Regarding WP5, planning systems require run-time information about
transportation, e.g. current train schedules, available assets or capacities and infrastructures. This
information might be captured as events or as persistent information that needs to be aggregated
and correlated with events, e.g. to ensure the assets and capacities are actually available as shown
in the GET Service platform.

Furthermore, re-planning might be required when unexpected events are detected, e.g. a terminal
closed due to construction sites for an unlimited period of time. Therefore, providing accurate event
definitions as early as possible is of utmost importance to execute proper re-planning operations.
Finally, WP7 requires the specification of events and the aggregation service to support the
orchestration of transportation-specific control structures, defined using the concepts developed in
WP4. This orchestration should provide novel reconfiguration techniques to support adaptions of
running transportation-specific control structures. Therefore, the processing activities mentioned

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 8

above will be represented in the process models developed in WP4 or required for the purpose of
tasks in WP7.

The deployment of the aggregation service requires the other components to specify the structure of
events and information that the user interface forwards and that the transport service, the run-time
aggregated planning and the orchestration service require.

1.3 Deliverable Goal

D6.3 aims at providing a manual for the interaction with as well as the usage, functions, and
implementation of the information aggregation engine. This includes a description of functional as
well as non-functional aspects, e.g. its architecture, the technologies used, security, and extension
capabilities.

For this purpose, the managed data is defined according to the conceptual foundations of D6.1
(Baumgrass, Cabanillas, Di Ciccio, Meyer, & Schmiele, 2013) and the aggregation engine
implemented in accordance with the defined architecture of the information aggregation engine in
D6.2 (Baumgrass, et al., 2014). Based on this deliverable, D6.4.1 and D6.4.2 will depict a catalogue
of event subscriptions and the extension of the prototype able to (semi-)automatically support the
scenarios introduced in (Treitl, et al., GET Service Project ï Deliverable D1.1, 2013).

1.4 Deliverable Structure

The deliverable is structured as follows. In Section 2, the fundamentals of event-based
communication are introduced in general (Section 2.1) and specific for the aggregation engine
(Section 2.2). These fundamentals are essential to understand the interaction with the aggregation
engine for event subscription and distribution in the GET Service project. Then, Section 3 describes
the usage of the aggregation engine, first, the interaction mechanisms in the user interface (Section
3.1) and second, with the implemented web service of the aggregation engine (Section 3.2). These
two are complemented by a short summary in Section 3.3. The event distribution through the
aggregation engine to the components in the whole GET platform is provided by event
subscriptions, which are introduced in Section 4. In particular, this deliverable includes a general
description of how to formulate event subscriptions (Section 4.1), of how they are adaptable with
run-time information of processes (Section 4.2) and of an example for transportation-related events
in the GET Service project (Section 4.3). The example gives a detailed outlook on how the works of
D6.1, D6.2, and D6.4 are intertwined to serve the deliverables of T6.4 (GET Service, 2012).
Sections 5 and 6 highlight important functional and non-functional aspects of the aggregation
engine. Thus, these sections present the system architecture (Section 5.1) and implementation
details (Section 5.2) as well as a discussion of its integration in GET Service (Section 6.1) and
aspects on security (Section 6.2), performance (Section 6.3), and extensibility (Section 6.4). Finally,
the deliverable concludes with a discussion of next steps (Section 7).

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 9

2 Event - Based Communication

In event-based communication, participants communicate by generating and receiving information
about occurrences of events. These are exchanged as event notifications.

Definition 1 (Event notification). An event notification (also: message) is used to transmit event
information in a serialized form. One notification may be used to convey several occurrences of
events (Mühl, Fiege, & Pietzuch, 2010).

Examples are a message on the mobile device about a congestion or an email about the order of
a transport.

In D6.1 ((Baumgrass, Cabanillas, Di Ciccio, Meyer, & Schmiele, 2013), Section 4.1), event sources
and event consumers were introduced as the main participants of such a communication. In the real
world, event sources are the software components that publish event notifications while event
consumers are software components that subscribe for a certain set of events and consume the
corresponding event notifications. However, the control of their interaction is often handled
externally and not by the participants.

All components in an event-based communication are linked by event distribution mechanisms
represented as event channels through which events are transported.

Definition 2 (Event channel). An event channel (also: event mediator, event notification service,
event broker) is a component that receives events from an event source, makes routing decisions,
and sends the unchanged events to one or more event consumers in accordance with these
routing decisions.

Examples are a firewall that controls the incoming and outgoing network traffic or an airport
baggage handling system that ensures that all luggage gets to the correct location in the airport.

Typically, an event source publishes an event to the event channel as soon as it happens. Likewise,
an event is pushed to the consumers as soon as the respective subscription was triggered. For the
synchronization the event channel implements the publish-subscribe pattern (also: observer pattern)
as communication pattern. It helps to keep cooperating components synchronized:

Å One-way propagation of changes: one source (also: publisher, producer) notifies any
number of consumers (also: subscribers, observers) about occurrences of events

Å A producer may have any number of dependent consumers

Å Each consumer registers at a channel to receive notifications about events of interest

Å Consumer registrations are referred to as subscriptions

Definition 3 (Event subscription). Consumers describe the kinds of notifications they are
interested in in form of event subscriptions (Mühl, Fiege, & Pietzuch, 2010). In the context of GET
Service, these subscription are given as Esper queries, see Section 4.

For example, a planner is interested in updates of the transportations he is responsible for, e.g.
whether certain tasks have been executed.

Thus, the event channel decouples the producer from the consumer. This means, event sources
are unaware of any consumers, event sources do not publish events with the intention to trigger
some actions in another component, and event consumers rely only on the events published, not on
where or by whom they were published.

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 10

If an event source publishes an event, the event channel checks the subscriptions and notifies the
consumers. For this purpose, the event channel must provide six core functions, see Figure 1.

Figure 1: Event channel's logical functions

Each event source advertises event types, i.e. the structure of its events (see D6.1 (Baumgrass,
Cabanillas, Di Ciccio, Meyer, & Schmiele, 2013)). Thus, event types must be advertised before
event sources can publish corresponding events through the event channel. Each component may
act as advertiser, source, and/or subscriber for an arbitrary number of event types. Each
subscription contains a condition that defines the requirements, which must be fulfilled to trigger
this subscription. If the condition associated with a certain subscription matches a particular event,
the respective event matches this subscription and as a result the corresponding event notification
is send.

A subscription is formulated as a query. These can be held simple, being just the event type. But we
might also have complex subscriptions, which include the definition of conditions and combine
several event types etc. As formal language to define queries for event matching event processing
languages (EPLs) may be used. In D6.2, the event processing language (EPL) of the Esper
complex event processing system (EsperTech Inc., 2008) was identified as an appropriate language
for the GET Service project. Examples and definitions of event queries in Esper in GET Service
project can be found in Section 4.

An event matching engine (e.g. implemented by an event processing agent) is a software
component that implements the event matching. In our case we base the matching on Esper. A
matching algorithm specifies the processing steps that need to be executed to reliably detect all
subscriptions that match a particular event object.

Definition 4 (Event matching). Event matching is the procedure of detecting the subscriptions that
match a particular event.

For example, when a planner subscribes to all events of a certain vehicle using its unique identifier
a matching exists for all events that reference the vehicle with this identifier.

2.1 Implementation of Event - based C ommunication

To effectively disseminate and process events, the producer and consumer must agree to use a
commonly understood message format and a compatible transport mechanism. Usually, the
transport is implemented using an event channel. This event channel is often implemented using a
message-oriented middleware (MOM). In the context of GET Service, the MOM system called
ActiveMQ1 that implements the Java Message Service (JMS) standard2 is used for pushing and
pulling events. The request-response based communication, however, is enabled through the

1 http://activemq.apache.org/
2 http://www.oracle.com/technetwork/java/docs -136352.html

(un)advertise

Event
source

Event
channel

Event
consumer publish

(un)subscribe

notify

http://activemq.apache.org/
http://www.oracle.com/technetwork/java/docs-136352.html

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 11

Simple Object Access Protocol (SOAP)3 for the implementation of the web services. Both
mechanism are explained below.

In general, forwarding of notifications may be implemented by a pull scheme, where consumers pull
notifications from the event source or the event channel as shown in Figure 2. Pull scheme mostly
produces high network traffic and (potentially) a huge number of needless pull requests.

Figure 2: Event-based communication: Pull scheme

Typically, a notification is pushed through the event cannel to the consumers as soon as its
respective subscription was triggered as shown in Figure 3. Push scheme is well suited to
implement a (near to) real-time communication of events, resp. event notifications.

Figure 3: Event-based communication: Push scheme

The aggregation engine in the GET Service project implements the push scheme to distribute event
notifications. This allows for the dissemination of events at the time they happen without requiring
the event consumer to ask for scheduled updates.

Depending on the system that is used to implement the event channel, two distribution mechanisms
may be used to avoid the loss of events: point-to-point queues and publish-subscribe topics. The
former are used to address a single, preconceived consumer, who consumes the event notification
and realizes in this way less decoupling. The consumer consumes events once she/he is connected
to the event channel, i.e. the event channel holds the events in the queue until a consumer
connects to this queue. On the contrary, topics allow multiple, anonymous consumers with high
decoupling. In this case, events are available o all connected consumers until they expire.

3 http://www.w3.org/TR/soap/

http://www.w3.org/TR/soap/

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 12

In order to keep the storage as light as possible, the aggregation engine publishes event
notifications in a queue from which a consumer, e.g. the Extended GET platform, pulls the events
and consumes them right after receipt.

2.2 Event - based C ommunication in GET Service with the

Aggregation Engine

In general, the following components are part of the event-based communication with the
aggregation engine in GET Service (see Figure 4):

¶ Consumer ï the component consuming events (see D6.1, (Baumgrass, Cabanillas, Di
Ciccio, Meyer, & Schmiele, 2013))

¶ Source ï the component publishing events (see D6.1, (Baumgrass, Cabanillas, Di Ciccio,
Meyer, & Schmiele, 2013))

¶ Aggregation engine ï on a high-level, it comprises the following components:
o The component responsible for dissemination of events (transmitting notifications),
o The component that processes events,
o The component for the coordination/preparation of events, event types and

subscriptions, and
o The component that is usable for logistics purposes in the GET Service project.

Figure 4: Event-based communication through the information aggregation engine

Steps of the communication:

1. Event sources, for example, mobile clients are connected to the aggregation engine. These
are responsible to publish events. Therefore, they advertise the event types defining the
format and structure of their events.

2. An event consumer subscribes to a combination of events. This is done by a query that
defines the conditions that an event or more than one event must match to be forwarded to
the consumer.

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 13

3. To inform a consumer about events matching his subscription in real-time, he connects to
the corresponding queue (queueID) in the event channel.

4. After the advertisement of an event type, the source can send events of this structure and
the aggregation engine is able to transform the event information and match subscriptions.

5. Each event approaching the aggregation engine runs through the queries for matching.
6. In case of a matching, the matching result is forwarded to the consumer. This might be

aggregated/correlated/derived information. Meaning we do not only transmit simple events
between source and consumer but also complex events (see D6.1, (Baumgrass, Cabanillas,
Di Ciccio, Meyer, & Schmiele, 2013)).

7. After receiving all events of interest, the consumer must close the connection and
unsubscribe in the aggregation engine.

8. Finally, the source has the possibility to unadvertise the event type to tell the system that it
will not further publish events of this type.

The communication in this order is recommended. However, in the real world, we might also find
cases where the source adapts the structure of its events, wherefore the query and subscription
might be out-of-date and must be modified by the subscribers. A notification of a change is currently
not handled in the aggregation engine. However, the aggregation engine integrates fixed high-level
event definitions to avoid such situations. Examples for such are described in Section 4.3.

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 14

3 Using the Information Aggregation Engine

The information aggregation service provides functionalities to capture real-world events from
different sources, to process these events, e.g., by aggregation or transformation, and to provide
and to manage these events for event consumers, e.g., logistics service providers. In Section 3.1,
the usage of the aggregation engine through the user interface is described, while Section 3.2 gives
code examples to call the web service. This section closes with a summary in Section 3.3.

The aggregation service is composed of a subset of components implementing parts of the Core
GET Service platform presented in D2.2.2 (Saraber, 2014). For the sake of completeness, these are
summarized in this deliverable again in Section 6.1. It mainly implements the storage of
subscriptions and events as well as the components that enable receiving, processing, and sending
events. These components are, in general, of use in any domain that relies on processes and
events to monitor and predict current process execution in real-time. Any user of the aggregation
engine may conduct the customization for logistics purposes in GET. In Section 4.3, one possible
use case in the course of the GET service project is described to support the scenarios and use
cases described in D1.1 (Treitl, et al., GET Service Project ï Deliverable D1.1, 2013). In the
upcoming deliverables D6.4.1 and D6.4.2 we provide more customizations for the logistics domain
and the GET Service project.

In particular, the aggregation engine relies and combines four different components to process and
distribute events:

¶ Aggregation event channel ï component responsible for dissemination of events
(transmitting notifications),

¶ Aggregation event processing ï component that processes events,

¶ Aggregation event handler ï component that connects to event sources receives, stores,
and forwards events to other components, and

¶ Aggregation event services ï component that connects to event consumers as well as the
channel and is able to handle, store, and forward event subscriptions.

The sequence of actions across the different components that were summarized as aggregation
engine in Figure 4 is shown in more detail in Figure 5. It exactly shows the responsibilities and
responses of the different components. In the following paragraphs this sequence will be described
using examples in the aggregation engine for its implementation. This should be used as guide for
the partners of the GET Service project as well as external event sources and consumer to publish
and subscribe to events provided by the aggregation engine.

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 15

Figure 5: Sequence of actions to publish and subscribe to events of the aggregation engine

3.1 Usage of the Aggregation Engine through the User I nterface

The usage of the aggregation engine in a user interface was not required in this deliverable,
however, WP6 decided to provide it additionally, to allow a human user to inspect the information (in
particular events, aggregations, queries, and subscriptions) of the aggregation engine. The
sequence of actions shown in Figure 5 may be replayed in the User Interface of the aggregation
service available at http://bpt.hpi.uni-potsdam.de/GETAggregationService.

http://bpt.hpi.uni-potsdam.de/GETAggregationService

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 16

Figure 6: User interface of the WP6 aggregation engine

Figure 6 shows the start screen of the aggregation engine. The system allows to import events
(Import), process events (Processing), show event-related information (Event Repository), define
queries (Queries) that may be reused to create subscriptions (Notifications), and to export events
(Export) all represented in the menu shown in Figure 6.

Figure 7 illustrates the import of an event type. Event types can be uploaded to the aggregation
engine as XML Schema files (a), an example of such an event type is given in Appendix I. After the
upload, the event type can be customized by the user (b): the name may be changed, the attribute
of the timestamp of an event may be chosen, which can either be the value of an attribute of the
event type itself or the time the event is imported in the system, and the attributes given in the XML
schema can be selected to be represented in the event type. The timestamp is especially relevant in
order to check whether events happen in a certain sequence (cf. Section 4.1). Finally, the user
receives feedback on the success or failure of his import (c). The event handler of the aggregation
engine checks the event type before passing it to the event processing component. Therefore, the
import is only successful in case also the event processing component accepts the event type
definition. In Figure 5, these steps correspond to the advertisement of event types between the
event source, the event handler, and the event processing component.

Figure 7: Upload example

The import of events through the user interface is done in the same way. It represents the step of
the source publishing an event (in a loop) in Figure 5. In case the XML is not well-formatted but
corresponds to an event type in the system the user receives the message ñThe events in the XML
file do not match to the given event type.ò. The user should check whether the event references the
right event type, includes the timestamp, and the values match with the data types of the attributes
defined in the event type. The aggregation engine matches all event attributes it can find in the
event, i.e. in case an event misses attributes the aggregation engine skips them, same for attributes
that are added additionally, they are neglected during import. Thus, the event imported in the

a) Upload an event types from an xsd-file. b) Specify the event type.

c) Upload messages.

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 17

aggregation will only contain values for the attributes defined in the event type that is registered in
the aggregation engine.

A consumer subscribes to the aggregation engine in several steps. First, he has to create the query.
This is done in the Live Query Editor that is accessible through the menu ñQuery -> Liveò, see
Figure 8. A query has a name and statement. The statement is formulized as SQL-like Esper
statement, which are explained in detail in Section 4. The aggregation engine stores a log, logging
each event that matched the query, shown in the bottom-right of Figure 8. The event types including
all attributes available in the system are shown in the bottom-left and help the user to formulate the
statements. In contrast to normal relational databases, event processing requires to first formulate
queries that are then matched against the events imported in the system. Thus, events that are
imported before the query cannot be included in a matching, i.e. historic analysis are not possible in
simple event processing. To cope with historic analysis, the aggregation engine includes the On-
Demand Query Editor (accessible through the menu ñQuery -> On-Demandò), which is similar to the
Live Query Editor with the difference that historic events may be requested. However, this editor is
only included in the User Interface for users to inspect historic information and not part of the web
service described in the next section. The specification of the queries correspond to the steps of
storing the query in the aggregation service and registering it in the event processing component
shown in Figure 5.

Figure 8: Query interface

Once the user entered a query, he can use it to get notified about new events matching this query.
A subscription is entered as notification. To receive events based on a query and to register a
subscription a user must be registered in the system. Currently, this registration is done via a simple

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 18

matching of the email address. In future, the aggregation engine could be connected to the passport
manager of WP2 in order to register and validate the user.

After a user logged-in, he is able to add a subscription. The login is provided in the menu Login
shown in Figure 6 at the right. After the successful login, the user interface displays userôs name
instead of the login button as shown in the upper-right corner of Figure 10.

For a subscription, the user must choose the menu
ñNotificationsò and add a new subscription via the ñAdd
notification ruleò button that opens a new window shown
in Figure 9. Three necessary fields have to be specified.
First as priority the user has the option to choose ñlowò,
which enables him to only see the events for his
subscription in the user interface, or ñqueueò, for which
the aggregation engine forwards all events matching the
subscription are forwarded to a queue in a channel to
which the aggregation engine is connected (see Figure
5). Thus, using the latter option, the user can connect to
the channel and receive events following the push
schema in event-based communication. Second, the user
must select the user that is informed about the occurrences of events. Only registered users can be
chosen. Finally, the query that is used to find matching events in the system is chosen. Such
queries have to be entered in the Live Query Editor first and cannot be on-demand queries.

Figure 10: Subscription interface

After the creation of the subscription, the aggregation engine visualizes all notifications registered in
the system including all related information in the user interface as shown at the bottom of Figure

10. This is the result of the createQueue(query) action of the aggregation engine and the UUID
corresponds to the queueID that the user uses to openConnection(queueID) as shown Figure 5.

Not shown in the user interface are the following steps that internally handle each event

approaching the system. After an event is published to the aggregation engine (publish (event)),

this event is stored locally in a relational database of the aggregation engine (store (event)) and

send to the event processing component for processing (process (event)). In the processing
component the event is matched against all queries registered via the Live Query Editor

(match (query)). If an event matches the result of the query is forwarded to the event services

Figure 9: Adding a subscription

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 19

together with the query it matched ((query,matchingResult)). In case a query is used in a

subscription with a queue (matchSubscriptio n(query)), the matching result is forwarded to the

channel to get published in the right queue (publishMatching (queueID,matchingResult)). The
channel then notifies every consumer that connected to the queue for the query

(notify (queueID,matchingResult)). Figure 11 shows an overview of available queues in the JMS
server called ActiveMQ. The queue produced by the aggregation engine is highlighted by the
surrounding rectangle and shows four event notifications are available for a consumer, i.e. they
have not yet been dequeued. Once a consumer connected to the channel and the queue, the
notifications are delivered to his system or application, i.e. they will be dequeued.

Figure 11: Overview of available queues in ActiveMQ

In Figure 12, the specific event notification of the queue corresponding to the subscription in Fehler!

Verweisquelle konnte nicht gefunden werden. (d730f115 - 994d - 4ecc - 9f03 - 3edf5c863344) is
shown. The queue is specified in the header attribute Destination of the event notification together
with other attributes, e.g. the timestamp when the event notification was send to the channel. The
event itself is given as message details and different to the import of events, WP6 decided to
publish events in JSON format. The import of events in JSON format is currently under development
for the next release of the aggregation service. As the query ñSelect * from
VehicleLocationEventTypeò associated to this event was using the ñ*ò, all attributes with its values
are contained in the message, even if they have no value or are empty, see Message Details in
Figure 12.

é é

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 20

Figure 12: Event notification details in ActiveMQ

The delivery of messages through the channel to the consumer using code examples is explained in
Section 3.2. The delivery of event notifications to the user interface in the aggregation engine is
shown in Figure 10. It is shown as table that may be filtered by the user using different filter
conditions. The notifications themselves have an ID, a time when they were triggered, the
specification summarized by the query and the user name (Notification for SelectVehicle(1) for user

Planner) and the event represented by its attributes as trigger itself. A user can select each
notification and mark it as read so that it disappears from his view and will never appear again. This
avoids the overload of notifications he looks into over the time. Note that users will only see
notification in case they are logged into the aggregation system and they themselves are assigned
to a subscription. In other words, a user will never see the notification of others.

The user can unsubscribe to a query by deleting the notification in the user interface (see button

ñDeleteò behind each subscription in Figure 10) that corresponds to the action unsubscribe (query) .

In this case, the aggregation engine looks up the right queue and informs the channel to delete it

(destroyQueue (queueID)). Furthermore, the aggregation engine forces the event processing
component to not consider the query for the upcoming events and the event handler to delete the

query out of the storage of the aggregation engine (destroyQuery (query) ,unregister(query)). This
may be done in the user interface over the Live Query Editor using the Delete button shown in
Figure 8.

Under menu Event Repository the user may inspect all
events and event types stored in the aggregation engine.
In the Event tab, a filter selection allows him to search
for specific events. Each event shows its ID in the
system, its timestamp, the event type it belongs to as
well all contained values. As an event may contain more
values that the user interface is able to show under the
column Values a new window showing the details of an
event is opened once a user clicks on the event (a row in
the table). This view is shown in Figure 13. A
screenshot for the event overview is shown in Figure 14.

Figure 13: Event view

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 21

Figure 14: View on the event stored in the aggregation engine

In the same way, the event types in the Event Type tab may be inspected and filtered for a better
overview (see Figure 15). Here, the user also gets the opportunity to create event types directly in
the web interface of the aggregation engine. This means, he is not required to upload an XSD file to
specify an event type.

Figure 15: Event type overview

The specification of event types should include a name of the event type, the attribute in which its
timestamp is specified. Furthermore, attributes may be given by the user allowing him to define
attributes in a hierarchy, same as for the XML schema based event types. Thus, attribute
coordinates could contain the sub-attributes longitude and latitude as shown in Figure 16.

30 September 2014 Public Document

GET Service ICT-201 2-318275 ©GET Service consortium 22

In order to provide high-level events, the aggregation
engine implements an interface to define aggregation
rules. These may be defined by any participant. This
service is provided by the event services component.
Aggregation rules are forwarded to the event
processing component that is responsible to apply the
rules for the events imported in the aggregation and

that are part of the aggregation (register (rule)). The
application of specified aggregation rules is part of the
processing conducted by the event processing

component during the action transform (event) .

Aggregation rules are used for converting a
combination of events under certain conditions to new
events, e.g. in case the coordinates have changed of a vehicle between two subsequent events, the
aggregation engine could produce a new event characterising this movement, even with a distance.
A detailed discussion for this matter is discussed in Section 4.3.2, while Figure 17 shows the
corresponding interface to define them. In event processing, the general term event transformation
is used as umbrella term to represent the possibilities to split an event into many other events,
aggregate events of the same type to a new event, combine events of different types to a new type,
enrich an event with external information, or just project an event of one type into another type
without changing any attributes except the event type. In the user interface, the user is requested to
enter a name for the rule, the event type that is used for the creation of the new events as well as
the rule itself. After the selection of a specific event type for the creation the user get the tool tip by
the aggregation engine showing the attributes that may be set for the new event type, see top box in
Figure 17. The specification of the rules is based on the same language used for the queries and
explained in detail in Section 4. On the right side of Figure 17 the available aggregation rules are
shown, which can be shown, edited, and deleted by the user through the offered buttons below the
list.

Figure 17: User interface to define aggregation rules in the aggregation engine

Figure 16: Creation of a new event type

